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Why billiards?

Motion of a free mass point with elastic reflection off the bound-
ary.

Geometrical (ray) optics: ideal mirror reflection.
Mechanical systems with elastic collision (preserving energy and
momentum), including ideal gas models.
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A simple example:

αi = arctan

(
mi

√
m1 +m2 +m3

m1m2m3

)
, i = 1,2,3.

An obtuse triangle?

3



Symplectic structure on oriented lines (rays of light)

ω = dp ∧ dα.

Likewise for oriented geodesics of a Riemannian manifold (via

symplectic reduction from the cotangent bundle). The optical

(billiard) reflection is a symplectic map.

Which symplectic maps can be realized by optical systems?
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Caustics

Existence: if the billiard is strictly convex and sufficiently smooth

(KAM theory, Lazutkin’s theorem, 1973).

But they are impossible to contstruct.
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String construction

Γ = {X : |XA|+
^
|AO| +|XB|+

^
|BO|= const}.

Proof: ∇(|XA|+
^
|AO|) and ∇(|XB|+

^
|BO|) are unit vectors along

AX and BX, their sum is orthogonal to Γ.

This yields the string diffeomorphisms A 7→ B.
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Comparison: evolutes and involutes

Evolute: the envelope of the normals. Involute: given by string

construction; come in 1-parameter families.

7



Billiard in ellipse

Caustics: the confocal conics. The Graves theorem: the string

construction of an ellipse yields a confocal ellipse.
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Trap for a parallel beam of light:

But one cannot trap a 2-parameter family of rays, a consequence

of the Poincaré recurrence theorem.

In dimension d, how much light can one trap?
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Phase space, phase portrait, and the Joachimsthal integral:

If the ellipse is (Ax, x) = 1, then

(Ax, u) = −(Ay, u) = (Ay, v).
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Birkhoff-Poritsky Conjecture: the only billiards integrable near

boundary are the elliptic ones.

Recent progress: rigidity of circles (Bialy); perturbative versions

(Avila, De Simoi, Kaloshin, Sorrentino); algebraic integrability

(Bialy, Mironov, Glutsyuk).

Consequence of integrability (Arnold-Liouville theorem): a spe-

cial (Poritsky) parameter t on every ellipse.

If F is an integral, then d/dt is the Hamiltonian vector field of F .

The 1-form dt is invariant, and the billiard maps, i.e., the string

diffeomorphisms, are shifts: t 7→ t+ c.

11



Corollaries

Poncelet porism:
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The reflections from confocal ellipses commute:

“The most elementary problem of elementary geometry” (Pe-
doe):

AC + CB = AD +DB ⇐⇒ AE + EB = AF + FB
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Ivory’s lemma

On the attraction of homogeneous ellipsoids. Phil. Trans. Royal
Soc. London 99 (1809), 345–372.
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Coordinates outside of an ellipse:

The confocal ellipses are {t−s = const}, the confocal hyperbolas

are {t + s = const}. The billiard reflection in a confocal ellipse

is t 7→ t+ c, and in a confocal hyperbola t 7→ c− t.
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Ivory’s lemma by way of billiards

Corner reflector:

Diagonal of a rectangle are equal:
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Likewise for confocal conics:

The composition of four reflections is a shift with a fixed point

(a diagonal), hence it is the identity.
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Chasles-Reye theorem

Coordinates s1, s2, t1, t2. Then t1 − s1 = t2 − s2, hence t1 + s2 =

t2+s1, and therefore points C and D lie on a confocal hyperbola.
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Let f and g be the distances from points to point O going around

the ellipse. Then

f(A) + g(A) = f(B) + g(B), f(C)− g(C) = f(D)− g(D),

hence

f(D)− f(A)− g(A) + g(C) + f(B)− f(C)− g(D) + g(B) = 0,

or

|AD|+ |BC| = |AC|+ |BD|,

and the quadrilateral is circumscribed.
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Poncelet grid of circles
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Back to Poritsky parameter.

Poritsky theorem [1950]: A (germ of a) curve in the Euclidean

plane that possess a Poritsky parameter is a conic.

Extended to spherical and hyperbolic geometries, and to outer

billiards, by A. Glutsyuk. For outer billiards, an analog of the

string construction is the area construction.

The relation to the arc length parameter s is dt = k2/3 ds (for

outer billiards, it’s dt = k1/3 ds, the affine length element). This

is how, in the limit, the impact points of any billiard, not neces-

sarily elliptic, are distributed.

21



Sketch of proof of Poritsky theorem

Brianchon theorem:

The converse holds as well.
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One has `dα = mdβ (always) and ds = dt (Poritsky property).

Also s(α) and t(β), hence s′dα = t′dβ, and then

m

`
=
dα

dβ
=
t′

s′
.
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Therefore

|2,12|
|1,12|

=
t′2
t′1
,
|3,23|
|2,23|

=
t′3
t′2
,
|1,31|
|3,31|

=
t′1
t′3
,

hence

|2,12|
|1,12|

|3,23|
|2,23|

|1,31|
|3,31|

= 1,

and Ceva’s theorem implies that the lines are concurrent. QED
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Three properties

1. Graves property (of an annulus foliated by convex closed

curves): a caustic of a caustic is a caustic;

2. Poritsky property (of a strictly convex curve): the string

diffeomorphisms are shifts;

3. Ivory property (of a net – or a 2-web – of curves).

And, as we saw, (1) ⇒ (2) ⇒ (3).
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Other integrable billiards

Conics in S2 and H2, and ellipsoids in R3:

The three properties hold for the lines of curvature (which are

the intersections with confocal quadrics).
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Elliptic coordinates and Liouville metrics

For confocal family of conics

x2

a+ λ
+

y2

b+ λ
= 1,

one has the elliptic coordinates (λ, µ), and

dx2 + dy2 = (λ− µ)

(
dλ2

4(a+ λ)(b+ λ)
−

dµ2

4(a+ µ)(b+ µ)

)
.

More general, Liouville metrics:

ds2 = (U1(u)− V1(v)) (U2(u)du2 + V2(v)dv2),

and Liouville nets of coordinate curves u = const and v = const.

Example: lines of curvature on an ellipsoid.
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The geodesic flow of a Liouville metric is integrable by separation

of variables; it has an integral, quadratic in momentum.

Consider an annulus A with a Riemannian metric and a foliation

F1 by smooth geodesically convex curves. Let F2 be the foliation

by the orthogonal curves.

Theorem: The following four properties are equivalent:

(i) The foliation F1 has the Graves property;

(ii) The inner boundary curve of A has the Poritsky property;

(iii) The foliations F1 and F2 form a Liouville net;

(iv) The net (F1,F2) in A has the Ivory property.

There is a local version of this result as well.
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Generalized Birkhoff-Poritsky conjecture: Given an annulus

with a Riemannian metric in which one of the components Γ of

the boundary is strictly convex, consider the billiard system near

this component. If a neighborhood of Γ is foliated by caustics,

then the metric near Γ is Liouville, and Γ is a coordinate line.

This implies Birkhoff’s conjecture, due Weihnacht’s classification

of Liouville nets in R2 (1924):

Theorem: Liouville nets are of one of the following types:

a) Confocal ellipses and hyperbolas;

b) Confocal and coaxial parabolas;

c) Concentric circles and their radial lines;

d) Two families of orthogonal lines.
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About proofs of the main theorem

(i) ⇒ (ii) ⇒ (iv) were sketched.

That (iii)⇔ (iv), i.e., Ivory is equivalent to Liouville, is a theorem

of Blaschke and Zwirner (1927-28). See also I. Izmestiev and S.

T. Ivory’s Theorem revisited.

That (iii) ⇔ (i), i.e., Liouville is equivalent to Graves, is due to

Darboux: Leçons sur la Théorie générale des Surfaces et les Ap-

plications géométriques du Calcul infinitésimal. Troisiéme partie,

1894, item 589, Livre VI, Chap. I.

See also V. Dragović, M. Radnović. Poncelet porisms and be-

yond. Birkhäuser/Springer, 2011.
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Finally, (ii) ⇒ (iii), i.e., Poritsky implies Liouville.

Recall the coordinates (s, t) near γ on a Riemannian surface:

Lemma: The coordinates x = (s+ t)/2, y = (t−s)/2 are orthog-

onal, and the diagonals x± y = const are geodesics.
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And a general result:

Theorem: If a Riemannian metric, written in orthogonal coor-

dinates (x, y), has the property that the diagonals x± y = const

are geodesics, then this metric is Liouville.

The proof is computational, and I do not dwell on it.

32



Joachimsthal integral revisited

Theorem: Assume that a convex curve γ admits a non-vanishing

normal vector field N such that for every points γ(x), γ(y), one

has

N(x) · (γ(y)− γ(x)) = −N(y) · (γ(y)− γ(x)).

Then γ is a conic.

The first step of the proof is that γ has the outer Poritsky prop-

erty: the segments [γ(x), γ(y)] with y − x = c cut off constant

areas.
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The theorem also holds in the spherical and hyperbolic geome-

tries, and in the higher dimensional case as well.

In the multi-dimensional case, this follows from the result that,

essentially, is due to M. Berger:

If every transverse 2-dimensional section of a smooth hypersur-

face in the Euclidean space is a (part of a) conic, then the

hypersurface is a (part of a) quadric.
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